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J.  Phys. A: Math. Gen 21 (1988) 1533-1547. Printed in the U K  

Analytic expressions for asymptotic forms of continued-fraction 
coefficients in the presence of a spectral gap 

Sayaka Yoshino 
Institute of Materials Science, University of Tsukuba, Tsukuba, lbaraki 305, Japan 

Received 10 November 1987 

Abstract. It is shown that the recursion method, i.e. the continued-fraction expansion of 
the diagonal element of the resolvent, is equivalent to the exponential Toda lattice in the 
sense that the limiting identities in the former method have the same forms as the 
conservation laws in the latter lattice. The asymptotic continued-fraction coefficients 
(recursion coefficients) are then related to a particular motion in the Toda lattice. As a 
result of this relation, the analytic expressions for the simply oscillating asymptotic recursion 
coefficients in the two-band (single-gap) case are given explicitly in terms of the Jacobian 
elliptic functions and in the Fourier series forms. 

1. Introduction 

The recursion method in condensed matter physics (Haydock 1980, Pettifor and Weaire 
1985) is known as a powerful and lucid approximation as far as the case with a 
single-band spectrum is treated. This method is nothing but the evaluation of the 
diagonal element of the resolvent by use of the infinite continued Jacobi-fraction 
(J-fraction). Here the coefficients of the J-fraction, which are referred to as recursion 
coefficients, are computed from the Hamiltonian and the state with respect to which 
the diagonal element is taken. 

The success of the recursion method in the single-band case is largely due to the 
convergence of the recursion coefficients, i.e. to the utility of the traditional constant 
termination (replacement of the recursion coefficients beyond an adequate stage by 
their limits). On the contrary, if spectral gaps exist (multiband case), i.e. if the support 
of the spectrum is composed of two or more segments, then they do not converge and 
they exhibit asymptotically oscillating behaviours. Numerical experiments (Turchi et 
a1 1982, Haydock and Nex 1985, Anlage and Smith 1986) suggest that their asymptotic 
behaviours are well ordered and thus there may exist simple analytic expressions for 
their asymptotic forms. 

In a preceding paper (Yoshino 1987, hereafter referred to as I )  the present author 
developed an analytic theory to investigate the asymptotic properties of the recursion 
method applicable to the multiband case. In I various asymptotic (limiting) relations 
of the recursion coefficients were derived, and the period of their asymptotic oscillations 
was written as a function of the support of the spectral function. Analytic expressions 
for their asymptotic forms, however, were not given. The purpose of this paper is to 
ascertain them in the two-band case. We have two reasons to treat this simple case: 
one is that this case seems to be much more important for practical applications and 
the other is that rather familiar functions (the Jacobian elliptic and the theta functions) 
are available. 

0305-4470/88/071533 + 15$02.50 0 1988 IOP Publishing Ltd 1533 
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This paper is outlined as follows. First in 0 2 we give the analytic results that are 
obtained in I and are needed for the arguments in this paper. The numerical examples 
in 5 3 suggest that the asymptotic recursion coefficients in the two-band case are simply 
periodic and are expanded in the Fourier series where the constant and the principal 
terms are dominant. In Q 4, which is the main part of this paper, we point out that 
the limiting relations obtained in I have the same forms as the conservation laws in 
the Toda lattice with exponential interactions (Toda 1967, 198 1). The recursion 
coefficients correspond to the Lax-pair variables (at a certain instant) in the Toda 
lattice, if the order of the former coefficients is regarded as the mass index in the latter 
lattice. This connection enables us to express the asymptotic forms of the recursion 
coefficients by use of the periodic solution in the Toda lattice. The explicit expressions 
in the two-band case are then given. In P 5 we give some remarks as concerns our 
results, and finally in 5 6 this paper is summarised. 

2. Survey of the analytic results 

Our problem is as follows. Suppose that the diagonal element of the resolvent, which 
is equal to the Stieltjes transform of an adequate spectral function, is written in the 
form of the infinite continued J-fraction 

( O ~ ( Z -  H)-'lO)= ( z - X ) - '  d p ( x )  I, 
= l/{z-aO- b i / [ z -  a ,  - b : / ( z  - 0 2 -  b i / .  . .)I}. (1) 

Here H is the Hamiltonian under consideration and the state (0) is assumed to be 
normalised. The spectral function, which we refer to as the band, is denoted by 
d p ( x )  = w ( x )  dx, and E is its support. The pairs of coefficients {a,, b,} (both real and 
b, > 0, n = 0, 1 ,  2, . . .) are the recursion coefficients. Then how are their asymptotic 
forms expressed? 

In the recursion method a, and b, are calculated successively from H and IO), 
accompanied with the generation of the semi-infinite sequence of states (kets) orthonor- 
mal to each other. The semi-infinite-dimensional matrix representative of H by using 
this sequence as a basis is real-symmetric and tridiagonal, and its diagonal and 
subdiagonal elements are given by the a, and b, respectively: 

In the following our analytic results are briefly presented (for details see I). 
Although we are concerned with the single-gap case in this paper, we here refer to the 
general multigap case since the multigap description seems to be more transparent. 
The band is thus assumed to be composed of m subbands, and its support is written 
asE=[B, ,A,]+ . . .+[ B , , A , ] + [ B , , A , ] , w h e r e A , a n d B , ( k = 1 , 2  , . . . ,  m)aregiven 
in descending order. 

We now consider the following electrostatic problem. We regard E as the union 
of m segment conductors arranged in a two-dimensional complex plane, and assume 
that the continuous electric charge 2 7  is distributed on E such that all potentials of 
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m components are kept to be equal to one another. We then define the complex 
potential 4 ( z ) ,  which behaves at infinity as - In z + O( l /z ) .  

The relevant characteristic quantities are as follows. 
(i)  There exist m - 1 saddle points of the electrostatic potential. They are denoted 

(ii)  The transfinite diameter of E denoted by y. The electrostatic potential of the 

(iii) The individual electric charges distributed on the conductors. We denote them 

(iv) The coefficients in the Taylor series (at infinity) of d4(z) /dz.  We define A, 

by Sk ( k  = 1,'2, . . . , 111 - 1). 

conductors is given by In( 1/ y ) .  

as q k  on the kth component [Bk ,  A k ]  ( k  = 1,2 , .  . . , m). 

( r = 1 , 2 , 3 ,  . . . )  by 

For r =  1 , 2  we have 

m m - I  

A,=: ( A : + B : ) - $  s:+$A:. 
k = I  k = l  

Note that all the characteristic quantities are functions of the support E (i.e. Ak 
and Bk ( k  = 1,2, , , . , m)) and only of E, i.e. they do not depend on the band shape. 
Here we use this term, as in I, to make reference to the variety of spectral functions 
with the same support. 

We assume that p ( x )  satisfies the Geronimus condition 

Iim 6"' In a ( 6 )  = O  
6 - + O  

a ( 6 )  = inf [ p ( x  + 6)  - p ( x ) ]  
[ X , X + G ] C €  

which is a sufficient condition for the analytic properties given below. We see that 
this condition, which restricts the rate of the decrease of w ( x )  when it drops to zero, 
is satisfied by ordinary spectra (e.g. a spectrum with power-law decrease), except for 
the one with very singular tails such as p(x) -p(O)-exp(- l /x ' )  ( c S $ )  at x +  10. 
In this paper we hereafter assume that this condition is satisfied. 

In I various asymptotic (limiting) properties have been obtained analytically and 
are as follows. 

(i) The transfinite diameter equals the limit of the geometric mean of 6, 

lim (:g: b,)'" = y. 
n - 5  

( i i )  As concerns the arithmetic means of the products of a,, and 6,, we have the 
following limiting relation: 

1 
lim - Tr[ H',] = A, 
n-cc n r = 1,2,3,  . . . 

Here H ,  is the n-dimensional matrix obtained by truncating H (see equation (2)). It 
is obvious that the left-hand side of equation ( 6 )  is written by the limiting arithmetic 
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mean of the sum of rth-degree products of a, and b,. In particular for r = 1 , 2  we 
may write 

1 n - I  

n-.= n j = o  
lim - a, = A l  

(iii) The period of the asymptotic oscillations of a, and b, is determined by qk in 
such a manner as their asymptotic forms may be written as F(nql ,  nq,, . . . , nqm-,) ,  
where F ( .  , .) stands for a periodic function with period 27r with respect to all arguments. 

3. Numerical examples 

In this section the asymptotic forms of the recursion coefficients are speculated from 
the numerical tests given below. Our tests are simple. We treat two kinds of supports, 
say E l  and E * ,  and two kinds of band shapes for each support. Table 1 gives the 
positions of the band edges of these supports and also the values of the characteristic 
quantities calculated numerically. The figures in the period column bear the same 
meaning as in I, i.e. the asymptotic recursion coefficients for the support E l  ( E , )  will 
look like a mixture of two (three) subsequences with period 20.5 (78.3). 

Table 1. The characteristic quantities of the supports treated in this paper. 

E Band edges S1 A I  Y In  y q l / 2 n  Period 

El [0,1.5]+ [2.5,3.5] 2.011 27 1.738 73 0.837 67 -0.177 13 0.451 26 2-20.5 
E2 [OJI  +[3,3.51 2.542 47 1.707 53 0.828 71 -0.187 88 0.346 06 3-78.3 

The first 60 pairs, {a,, 6,) ( n  = 0,1,2, . . . ,59), are computed in each case and are 
shown in figure 1. Remembering that the geometric mean converges as concerns 6,, 
we plot In b, instead of b, itself. We see that in every case the asymptotic behaviour 
appears only after several recursion steps. It is readily seen from figure 1 that the 
arithmetic means of a, and In b, are nearly equal to A I  and In y, respectively (see 
equations (6a)  and (5)). We do not give here a more quantitative analysis or estimates 
of higher-degree relations in equation (6). 

We examine the period of the asymptotic oscillations. As mentioned in § 2 the 
asymptotic forms of a, and b, should be written by periodic functions of period 277 
with argument nq,. In figure 2 the plots of cos(nql) and cos[(n+f)q,]  as functions 
of n are given as typical examples of such periodic functions. Note that the phase 
difference between two plots is fq l  . Comparing figures 1 and 2 we see that the asymptotic 
oscillating deviations of a, and In b, from their arithmetic means may be well 
approximated by single sinusoidal functions. In addition the phase of the oscillations 
of In b, seems to differ by nearly fql  from that of a, irrespective of the band shape. 
That is to say, we have for n >> 1 

a,-Al-CC" cos(nq,+a)  C">O 

ln(b,/ y )  - C" cos[(n + f )q ,  + a] Cb>O 
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1 in1 I 
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- 0 6 ~ 1  1 
0 50 0 50d n n 

Figure 1. Computed recursion coefficients. The band shape is shown at the right of each 
plot. The support is E ,  in ( a )  and ( b )  and E,  in ( c )  and ( d ) .  
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la1 lbl 
Figure 2. Plots of sinusoidal functions with the period asserted by our theory. The periods 
in ( a )  and ( b )  are those peculiar to the supports E ,  and E , ,  respectively. Thus ( a )  
corresponds to figures ] ( a )  and l ( b )  and ( b )  corresponds to figures I ( c )  and I (d) .  

if we choose a phase constant a adequately. As was pointed out by Turchi et a1 (1982), 
both the C" and C b  seem to be independent of the band shape. On the contrary the 
phase constant a may depend on it. Haydock and Nex (1985) claimed that a depends 
on the ratio of the spectral weights of two subbands (integrals of w ( x )  over individual 
subbands). 

Now we may claim the following as concerns the effect of w ( x )  on the asymptotic 
forms of the recursion coefficients. The asymptotic forms depend on w ( x )  through 
two parameters: one is the support E and the other is the above-mentioned phase 
constant a. It is a that depends on the band shape. The asymptotic recursion 
coefficients are written as 

a , = F " ( n q , + a ; E )  

In b, = F b (  ( n  + i ) q l  + a ; E )  
( 7 )  
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where both the F a ( . ;  E )  and F h ( . ;  E )  are periodic with period 27r with respect to the 
first arguments. Suppose that their Fourier expansions are given by 

X 

F" (x;  E )  = C l  + Cy cos x + C ( CP cos j x  + SP sin j x )  
/ = 2  

(8) 
1 

F ~ ( x ;  ~ ) = ~ , h + ~ P c o s x +  C ( ~ ; c o s j x + s , b s i n j x ) .  
/ = 2  

Note that the phase constant a has been so chosen that the terms containing sin x 
do not appear. Then C,"( = A , )  and C,h( = I n  y )  are already ascertained, Cy( > 0) and 
Cp( > 0) depend on E only, and in each of the expansions (8) the first two terms are 
dominant. As will be shown in $4.4, ST and Sf vanish also for j 3 2 .  

4. Analytic expressions via the Tods lattice 

In this section we intend to express analytically the asymptotic forms of the recursion 
coefficients in the two-band case. They should be simply periodic (with respect to n )  
and should satisfy the limiting properties given in § 2 .  

4.1. The C-free condition 

First we emphasise that an analytic expression, if it exists, is restricted severely in its 
form by the limiting relations ( 5 )  and ( 6 ) .  We put forth the following arguments. We 
may assume the asymptotic form (7 ) .  For example, we consider the relation ( 6 a ) .  
Suppose that q, /27r is rational with p being the denominator of its irreducible fraction, 
then the left-hand side of equation ( 6 a )  can be replaced by the sum 

If ql/27r is irrational, on the other hand, it is evidently replaced by the integral 

(1/27r) Jo2T F a ( x ;  E)  dx. (96 )  

We know that q ,  can be varied arbitrarily, continuously and thus infinitesimally. We 
may therefore claim that the analytic expression F a (  nq, + a; E), which is to vary 
continuously as q , ,  must have such a property that the sum ( 9 a )  assumes the same 
value as the integral ( 9 b ) ,  since for an arbitrary rational case of q1/2.rr there exists an 
irrational case in its arbitrary neighbourhood. In other words, we may state that it 
must make no alteration on the analytic form whether we consider a commensurate 
or an incommensurate case. This condition will be referred to as the C-free (com- 
mensurability-free) condition. Here we should observe the dependence of F a (  .; E )  
on the second argument E, which cannot be invariant when q ,  varies even though the 
variation is infinitesimal. Strictly speaking, it is this dependence that is restricted by 
the present argument (see appendix 1). 

The C-free condition is imposed on every higher-degree term in equation (6) and 
also on the logarithmic version of equation ( 5 ) .  It thus seems to be practically impossible 
to ascertain such an analytic form that satisfies the C-free condition completely. We 
are, however, fortunate enough to know the system that bears the identities of the 
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same forms as equations ( 5 )  and ( 6 )  and hence satisfies the C-free condition. It is the 
Toda lattice (Toda 1967, 1981) and in the subsequent subsections we will make use 
of the solutions of this lattice. 

4.2. The Toda lattice in the Lax form 

We write the equation of motion for the classical non-linear lattice dynamics in the 
infinite (not semi-infinite) Toda lattice as 

(10) 
d2 
- Qn = exp( Qn - 1 - Qn ) - exp( Qn - O n +  1 )  dt2  

where Qn = Q n ( t )  (t  is time) is the displacement of the nth mass (-a< n <e). The 
infinite lattice is necessary since we intend to observe not only commensurately but 
also incommensurately periodic waves. The equation of motion (10) has the following 
property. If Q n (  t )  is a solution of equation ( lo ) ,  then 

O , ( t ) =  Vt+Cn+C’+Q, , ( t  ( 1 1 )  

is also a solution with V, C and C’ being arbitrary constants. 

(1974). Let 
Let us analyse equation (10) according to the Lax-form treatment of Flaschka 

and L( t )  be the infinite-dimensional real-symmetric and tridiagonal matrix, whose 
diagonal elements (n, n j and subdiagonal elements (n, n + 1 )  or ( n  + 1 ,  n j are the a,( t )  
and b,( t )  respectively. The semi-infinite-dimensional version of L( t )  has the same 
form as H (see equation (2)).  Then it can be proved that L ( t )  is orthogonally similar 
to L(O), i.e. the eigenvalues of L(t)  are independent of t. Here we have used slightly 
different notations from those by Flaschka, i.e. the roles of a,(t) and b,,(r) are here 
exchanged for each other, and Flaschka multiplied the right-hand sides of equations 
(12) by *;. The former is in order to make clear the equivalence to the recursion 
method, and the latter modification is not substantial for the Lax-form treatment. 

Now we may obtain a set of conservation laws, which states that the trace of every 
power of L(t)  is a constant of motion. Since we are treating the infinite lattice, it 
should be written as 

1 
n - s  lim -Tr[L,(t)‘] n = independent of t r =  1 , 2 , 3 , .  . . (13) 

where Ln( t )  is the truncated n-dimensional version of L( t )  whose entry runs from 0 
to n - 1. Equation (13 )  evidently has the same form as equation ( 6 ) ,  the right-hand 
side of which should be read as being independent of a, the band-shape parameter. 
It is obvious that this set of conservation laws is free from the commensurability. 
Hence, if we find a solution in the Toda lattice such that a,(t) and b,(t) are simply 
periodic, then we may use this solution as an analytic expression for the asymptotic 
recursion coefficients in the two-band case. 
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4.3. A simply periodic motion in the Toda lattice 

In this and  subsequent subsections we use the elliptic theta functions and  the Jacobian 
elliptic functions. Our notation of the theta functions agrees with that of ErdClyi 
(1953), i.e. they are denoted by O,(u, q )  = 1 , 2 , 3 , 4 )  with the period of 61 and 6l2 
being two and  that of and  13, being unity. The second argument of the theta functions 
is here called a nome and  is not explicitly written for simplicity. As concerns the 
Jacobian functions, e.g. sn( u, k ) ,  we also omit the modulus k, which has the well known 
one-to-one correspondence to the nome. According to the convention the symbol K 
denotes the real quarter-period of sn(u, k ) .  Hereafter we always use the symbols q 
and k to denote the nome and the modulus, respectively. We note that the q1 and q2 
defined in 0 2 to denote the distributed charges should be distinguished from the nome q. 

A simply periodic motion in the Toda lattice was obtained by Toda (1967). Properly 
speaking, Toda constructed this lattice from the requirement for a wave-like motion. 
We are concerned with a solution such that a , ( t )  and b , ( t )  (not necessarily Q,(r)) 
are simply periodic with respect to n.  The solution with wavenumber K and frequency 
w is written as 

(14) 

(15 )  

where V, C, C' and  S are arbitrary. We observe that a,( t )  and b,( t )  are always periodic 
irrespective of C, although Q,,(t)  is not periodic when C f 0. Equation ( 1 1 )  implies 
that when C is varied then the timescale must be altered simultaneously according to 
C. We, however, need not alter explicitly the timescale. This is because the solution 
(14) depends on t through the form of ut, which can be left unaltered if w is redefined 
adequately (the dependence through Vt is not significant since V is arbitrary). The 
dispersion relation expressing w as a function of K thus contains C, and is written a s t  

(16) 
Relation (16) is easily obtained by substituting equation (14) into equation (10) 

Qn ( t ) = Vf + Cn + C + In [ e,( U,, - ) / e,( U, ) ] 

U, = U, ( t ) = ( K n  - wt + S)/2 7T 

/ 2 7T = * e-c'2 81 ( K / 2 7T)/ 6 I (0). 

and using the following identities of the theta functions: 

64(  U + W )  e,( U - W )  e;( 0) = e:( U )  e;( W )  + e:( U )  e:( w ) .  

The first identity, where the symbol E is used to denote the complete elliptic integral 
of the second kind, is obtained by taking the derivative of the Jacobian zeta function: 
Z( U )  = ( d / d u )  In 04(u/2K) .  The latter identity is the addition formula (see Whittaker 
and  Watson 1927). Note that the nome q (or the corresponding modulus k )  is arbitrary 
but is common to both equations (14) and (16). 

From equations (12) and (14) we obtain 

+This  dispersion relation i s  different from that by Toda (1981, equation ( 2 . 3 . 2 ) ) .  I t  seems that Toda was 
misled. 
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In equations (14) and (17)  we can replace all e,(v) simultaneously by O,(v), since 
e,( U + i) = e,( U )  and S in equation ( 15) is arbitrary. 

We now refer to the Fourier expansions ( q  expansions) of ln[e,(~)/e,(o)] and  
e ~ ( u ) / e , ( u )  (ErdClyi 1953, p 358). The expansions of a n ( [ )  and In b,( t )  are then 
written as (leading terms only) 

an( t )  = V + 4 w q (  1 - q2)- '  sin(&) cos[ K (  n -+) - wt + 61 + . . . 
In b , ( t ) =  - f C + 4 q ( l - q 2 ) - '  sin2(fK) cos( r tn-wt+S)+.  . . (18) 

from which it follows that 

l / n  

Al: (:U: b,( t ) )  = e-'''. 

Equations (19a) and (19b) correspond to the limiting relations ( 6 a )  and (5)  in the 
recursion method, respectively. 

4.4. Analytic expressions for the asymptotic recursion coeficients 

Now we may use equations (17)  as the analytic expressions for the asymptotic recursion 
coefficients in the two-band case. Equations (17) and the dispersion relation (16) 
contain several arbitrary constants, most of which can be easily related to the parameters 
(including the characteristic quantities) in the recursion method by the equivalences 
between equations ( 6 a )  and (19a) ,  between ( 5 )  and (19b) and between (7)  with (8) 
and (18). They are tabulated in table 2. Note that a cannot be uniquely determined 
when we fix the support E but d o  not fix the band shape. 

Table 2. The correspondence of the parameters in the Toda lattice and in the recursion 
method. 

Toda lattice k or q") n (mass index) V K -ut + sign of w 
Recursion E'"' n (step index) y A ,  91 (or q2)'" a (or -a)"' + (or -)('I 

method 

( a )  This is not a quantitative correspondence. 
(b)  Note that S is arbitrary. I f  we impose the direct correspondence between equations (18) and ( 7 )  with 
(8), then this item should be - w f  + S -4.. 
(c )  I f  we choose q2 instead of 91 (note q ,  + q2 = 271), then the last two items are -a and -. 

The only unsettled constant in equations (16)-(18) is the nome q of the theta 
functions. To determine this we may use the second-degree relation (6b) .  If we 
substitute equations (17)  into equation (6b)  and replace the sum by the integral (see 
8 4.1), then the nome q in equations (16)-(18) will be expressed as a function of the 
parameters in the recursion method. This procedure, however, seems to have no 
prospect of a simple and  lucid expression, and  is not followed here. In this paper we 
settle this nome by taking the following steps. 

(i) First we express the characteristic quantities in the recursion method by use of 
the elliptic functions with an  adequate parameter (modulus or nome). This parameter 
is written as a function of E, i.e. that of the band edges, and has at  this moment nothing 
to d o  with the nome in equations (16)-(18). 
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(ii) Next we assume that the unsettled nome in equations (16)-(18) is given by 
the parameter used in step (i). Then equations (17), namely prospective analytic 
expressions for the asymptotic recursion coefficients, can be written in simple forms. 

The modulus (or the nome) in step (i) is, of course, not uniquely determined, since it 
is introduced only to express elliptic integrals. We must thus make a judicious choice. 

We start with step (i). As mentioned in I ,  we need to calculate definite elliptic 
integrals such that the integrand contains a factor of I(x - A , ) ( x  - A2)(x - B , )  
x (x  - Then q1 and s, are obtained by complete integrals of the third kind, 
and y is obtained by incomplete ones of the third kind. Hence q1 and s1 are expressed 
by sn U (or cn U )  and Z ( u ) ,  and y is by @,(U) in addition (see Erdklyi 1953, pp 321, 
363). Then the calculations are straightforward but tedious, and the resultant 
expressions are as follows. 

(iii) Lastly we prove that these expressions satisfy equation (66) .  

For brevity we let 

W ,  = A, - Bl w2=.42-B2 g = B, -A2 

A = : ( A ,  + BI + A,+  B,) 

k = [g (wi  + w z + g ) / ( w i  +g)(wz+g)I1’*.  

w = $ ( w ,  + W J  + g 

and use the modulus k given by 

(20) 

This choice of k is natural (see ErdClyi 1953, p308), and is indeed adequate for step 
(iii) as will be shown later. We also use the notations 

qT = ( K / . r r ) q ,  

U: = ( K / T ) u ,  

c cn qT = + ( w ,  - w I ) /  w (210) 

s, = A + $  W[cd + sZ(qT)] (22) 

Y=;we,(O)/e , (q, /2d.  (23 1 

U, = nq,  +a. 

Then q, is determined by 

and s1 and y are written by using q1 as 

The nome in equation (23) is, of course, the one that corresponds to the k given by 
equation (20). We have introduced the abridged notations c, s and d, the latter two 
of which are defined by 

s =sn qT = [(w, +g)(w,+g)] l”/  w 
d = d n  qT = $ ( w l +  w2)/ W. 

(216) 

(21c) 

The similar but different notations should be distinguished: s is defined by equation 
(21 b), while s1 is used to denote the saddle point. Note that Z( U )  is odd and periodic 
with period 2 K ,  while @,(U) is even and with period unity. 

Now we assume (step (ii)) that both the nome in equations (16)-(18) and the 
modulus given by equation (20) represent the same parameter. Then the expressions 
(17) with equation (16) can be rewritten in simple forms as follows. Hereafter we 
mean the asymptotic a, and b, simply by a, and b, ,  respectively. 
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First we give the Fourier expansions ( q  expansions) 
X 

a, -A ,  = ( 2 . r r / K ) [ ( w , + g ) ( w 2 + g ) ] ’ ”  

In(b,/ y )  = 4 1 j - ’q ) (  1 - q2)) - ’  sin2(ijq,) cos( j u , )  

which are the desired results (see equations ( 7 )  and (8) noting that a is arbitrary). 
The q expansions (24), which are known as rapidly converging Fourier series unless 
the modulus k is very close to unity, confirm the numerical observation that the 
asymptotic coefficients are well approximated by the constant and the principal terms 
(also see § 5.2). 

q’(1 -q2’)-I sin(tjq,) cos[ j (u , -~q,)]  
) = 1  

(24) 
8 

I = 1  

Next the expressions in terms of the Jacobian functions are written as 

b, = 4 W A 
after some tedious calculations. Here we have introduced a function 

A ( u ) = l - k 2 s 2 s n 2  u = 1 - [ g ( w , + w 2 + g ) /  W2]sn2 U 
which is even and periodic with period 2K, and have written it simply as A , =  A( U:). 

Lastly we give alternative expressions for a,. It is obvious that each expression 
must have a peculiar symmetric property with respect to the exchange of two subbands. 
That is to say, when w ,  and w2 are exchanged for each other and a is replaced by 
- a ,  then 

(i)  q, should be replaced by 27r - q , ,  and thus U, by - U, (mod 2 ~ ) ,  
(ii) k, y and 6 ,  should be invariant, and 
(iii) s1 - A  ( = - ( A ,  - A ) )  and a, - A  should change their signs only. 
These properties are apparent except for equation ( 2 5 4 ,  which is the expression 

that is convenient to see the upper and the lower bounds of a,. To ascertain an 
apparently antisymmetric expression for a, - A ,  we should observe the phases of a, 
and In b,. From the Fourier expansions (24) we see that the phases of a, i a,,, and 
b, are common to each other, and that the same is the case with those of a, and 
b,_ ,b , .  From these viewpoints we have 

(26) 
(27) 

( a , ) 2 = f W 2 ( 1 - A n ) ( l - d 2 / A , ) ( 1 - c 2 / A , )  (28) 
U, = A + f (  W/ c d ) [ A , - , A ,  - ( c 2 d 2  + + d ’)I (29) 

where A: = A‘(u:) (derivative). 
We can now prove (step (iii)) that equation ( 6 b )  is satisfied, as given in appendix 

2, and the analytic expressions obtained in this subsection are completely ascertained. 

U:  = ; ( U ,  + U,,,) = A -’ 2 W c d / A n  

a, =;(a, -a,+,) =f W k 2 s 3  sn U: cn U! dn u : / A ,  = -a  W s  AL/A,, 

5. Miscellaneous remarks 

5.1. Immediate consequences of the analytic expressions 

The upper and the lower bounds of the asymptotic recursion coefficients can be easily 
obtained from equations ( 2 5 a )  and ( 2 5 6 ) .  We denote them by the subscripts sup and 
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inf for the upper and the lower bounds, respectively. Then we may obtain 
asup=t (Ai+Bz)+ ig  ~ i ~ r = i ( A , + B , ) - f g  

bsup = t(  wi + w2) + & binF= $( w ,  + w2) .  

In the commensurate case these bounds are not necessarily infinitesimally approached 
by the recursion coefficients. In the incommensurate case, on the other hand, they are 
equal to the superior and the inferior limits of the recursion coefficients, and thus we 
can obtain their rough estimates by such a plot as figure 1. 

The expressions (26) and (29) indicate that U :  is linearly related to l / b i ,  and that 
a, is linearly related to b2,-,62,, respectively. These relations and the estimates (30) 
were already obtained in the commensurate case by Turchi et a1 (1982) in different 
manners, i.e. they investigated the periodic linear chain by the Bloch theorem. 

5.2. Numerical tests of the Fourier coeficients 

In this subsection we compare our analytic results with numerical ones. For this 
purpose we examine the Fourier coefficients. The analytic results are given by equations 
(24) and the numerical ones are obtained by a simple procedure: the least squares fit 
of the asymptotic recursion coefficients to the forms 

CY cos { j [ ( n  -q)q,  + a;]} 

Cp cos[j(nq, + a;)].  

3 

, = I  
a, = C: + 

In b, --. C,” + 
3 

J = 1  

This fit is done over the last 30 recursion coefficients shown in figure 1 (i.e. for 
3 0 s  n S 59). 

The results are listed in table 3. Note that the numerical C; is chosen to be negative 
in accordance with the analytic estimate, and that a,”’b/27r has an ambiguity in modulus 

Table 3. Comparison of the analytic and the numerical estimates of the first Fourier 
coefficients. The numerical estimates are based on the recursion coefficients shown in 
figures ] ( a - d ) .  For each estimate the upper figure indicates Cy or a;/2n- and the lower 
figure indicates Cf or a,b/2n. 

support CO Cl c2 c3 a 1 / 2 n  a 2 / 2 n  a J 2 n  

El Analytic 1.738 73 0.502 52 0.011 39 -0.002 53 - - - 
k2=7/10 -0.177 13 0.293 45 0.001 01 0.000 45 - - - 

Numerical 1.738 76 0.502 17 0.011 36 -0.002 54 0.9511 0.9510 0.9500 
(figure l ( a ) )  -0.177 00 0.293 17 0.001 03 0.00044 0.9510 0.9526 0.9476 

Numerical 1.739 12 0.502 89 0.011 62 -0.00093 0.1728 0.1726 0.2196 
(figure l ( b ) )  -0.17720 0.29342 0.001 16 0.00052 0.1726 0.1636 0.2199 

q = 0.074 690 

E2 Analytic 1.707 53 0.500 61 0.042 89 -0.000 58 - - - 
k2 = 7/9 -0.187 88 0.293 87 0.011 71 0.00002 - - - 

Numerical 1.707 59 0.500 32 0.042 95 -0.000 58 0.8454 0.8451 0.8475 
(figure l ( c ) )  -0.187 74 0.293 68 0.011 62 0.000 04 0.8454 0.8459 0.8827 

Numerical 1.707 87 0.500 44 0.043 19 -0.000 69 0.0152 0.0154 -0.0063 
(figure l ( d ) )  -0.18790 0.293 82 0.011 46 0.000 17 0.0151 0.0141 0.0032 

9 = 0.092 927 
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l/j. We observe that these Fourier series are no doubt rapidly converging. The phase 
constant cannot be determined analytically as far as this paper is concerned, but we 
have the analytic assertion that all the (YP and (Y; for each particular band shape should 
be equal to one another. We may find good agreements in the whole range of the 
comparisons. The distinguishable deviations of (Y 30'' in some cases are inevitable, since 
the corresponding C,"" are very small. 

5.3. The inverse problem 

First we refer to the familiar problem: what spectrum is produced by the periodic 
recursion coefficients? Suppose that no condition is imposed but that they are periodic. 
The answer is well known. If the period is integer, say p, then the corresponding 
spectrum is in general composed of p subbands, which are all absolutely continuous. 
In the incommensurate case, on the other hand, a singularly continuous spectrum 
occurs in general (see Cycon et a1 1987). 

Our problem, where the spectrum is given first, can be regarded as the inverse of 
the above problem, where the coefficients are given first. The above-mentioned general 
properties of the spectral structures should be compared with the following result of 
our problem. If the periodic a, and 6, are written in the forms of equations (25a)  
and (25b) ,  then the spectrum is always composed of two absolutely continuous 
subbands (and an additional point spectrum may exist) no matter what their period 
may be (two, three, . . . , or even infinity (incommensurate)). 

5.4. Single band as a limiting case 

It is obvious that we can construct the single-band case by taking an adequate limit 
of our two-band case. We are reminded of two kinds of such limits. One is g + 0 (then 
k++O), and the other is w ,  (or w 2 ) + 0  (then k + l - 0 ) .  

The former limiting case is rather trivial. We note that asup - ainf = g and bsup - binf = 
f g ,  i.e. the amplitudes (in the general incommensurate case) of the asymptotic oscilla- 
tions of a, and b, are proportional to g. Thus the limit g + O  directly implies the 
convergence of a, and b,, from which a simple single-band case follows. 

The latter limiting case, on the contrary, is not necessarily trivial. If we simply let 
w I  = 0, then it is not apparent that the asymptotic a, and 6, assume the single-band 
limiting values (+(A2+ B 2 )  and $ w 2 ,  respectively). We should consider the case where 
w ,  is infinitesimally small but not zero. Then q ,  is also infinitesimally small and we 
have a very large but not infinite period. We may assume that this period is in general 
incommensurate, and thus both the upper and the lower bounds (equations (30)) are 
significant as the superior and the inferior limits, respectively. They are given by 
ainf = $(A2 + B 2 )  + 0, asup = ainf + g, binr = $w2 + 0 and bsup = binf + f g ,  and therefore the 
recursion coefficients have finite swings. We can relate this limiting case to a soliton 
in the corresponding Toda lattice. We know that a soliton solution follows from the 
long wavelength limit of the simply periodic motion in the Toda lattice (see Toda 
1981). The finite differences between the upper and the lower bounds (g for a ,  and 
f g  for b , )  correspond to the height of the soliton. 

5.5. Multigap cases 

Although our explicit expressions apply to the single-gap case only, we can treat the 
general multigap cases in the same manner as in Q 4. More generalised wave-like 
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solutions of the Toda lattice are already known, and are expressed in terms of the 
Riemannian theta functions (Date and Tanaka 1976). These solutions in general give 
almost periodic waves and correspond to the asymptotic recursion coefficients in the 
multigap cases. The explicit forms are not given here and will be discussed elsewhere. 

6. Conclusions 

In this paper we intended to ascertain the asymptotic forms of the recursion coefficients 
in the two-band (single-gap) case, and have succeeded in expressing them by use of 
the elliptic functions, except that there remains a single parameter a (phase constant 
of the asymptotic oscillations) unsettled. The resultant expressions are written as 
functions of the support, except for this phase constant that depends on the band shape. 

These expressions are derived through the mathematical connection between the 
recursion method and the Toda lattice, which seems to be somewhat surprising. This 
connection, which is significant in the multiband cases rather than in the single-band 
case, may promise well for a deeper understanding of the recursion method, since the 
Toda lattice has been investigated to a large extent. We may state that the result in 
this paper is a typical exahple of the benefits of this connection. 

Appendix 1. Functions subject to the C-free condition 

The C-free condition given in Q 4.1 seems at first sight to be too restrictive. As a matter 
of fact, however, we can easily construct a function that satisfies this condition as 
follows. 

We denote the C-free function by the same notation F (  nq, + a ;  E )  as in the main 
text (a superscript is omitted), and for simplicity consider the case where the second 
argument is 4 , .  Then the C-free condition becomes 

( A l . l )  

where r / p  is an arbitrary fraction and is assumed to be irreducible. Since F ( x ;  4 , )  is 
periodic concerning x with period 27~,  we expand it in the Fourier series 

(Al .2)  

and substitute it into equation (Al .1) .  Then the sums over j in the left-hand side 
vanish except for the terms where rn is an integral multiple of p, and we may obtain 

C' f k p ( 2 ~ r / p )  elkpo = o 
k ( Z 0 )  

where the summation is over non-zero integers. Since Q should be regarded as arbitrary, 
we have 

fm(27~rPp) = O  for m=*p ,  *2p, 1 3 p  , . . . .  (A1.3) 

This condition is satisfied if f m ( q l )  = 0 for every m such that mq, = 0 (mod 2 7 )  and 
m # 0. The simplest example is f m ( q l )  = sin i m q , .  The Fourier expansions (24) of 4, 
and In b, evidently satisfy the condition (A1.3). 
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Appendix 2. Proof of the relation (6b )  

We introduce the definite integrals defined by 

I =L lozK [A(u)]"du 
2 K  

and express all the quantities by A, U', s, c, d and I , .  Then the band edges are written 
as 

A ,  = A + ;  W ( l  - c + d )  

A , = A + $ W (  - 1 + c + d )  

B ,  = A + ;  W ( l  + c - d )  

Bz = A + 4 W( - 1 - c - d ) .  
(A2.1) 

We can derive the recurrence relation 
2 n c 2 d 2 Z , ~ , - ( 2 n + l ) ( c 2 d 2 + c 2 + d ' ) I , + ( 2 n + 2 ) ( 1 + c 2 d 2 ) Z , + ,  -(2n+3)1,,, ,=0 

(A2.2) 
and  we may obtain 

Io= 1 I - ,  = l + ( s / c d ) Z ( q T ) .  
The value of I , ,  which enables us to know all of I,,, is not necessary here. The saddle 
point s, is thus written as 

s , = A + i W c d I - , .  (A2.3) 
Now it is straightforward to prove that the expressions given in § 4.4 satisfy equation 

(6b)  provided that we use equations (26)-(28) for a, and equation (256) for b,,. We 
rewrite the summand in the left-hand side of equation ( 6 6 )  as (a:)' + 2a:aJ- + (aJ-)'+ 
2b:, substitute equations (256) and (26)-(28), and replace the limiting arithmetic mean 
by the integral. Here note that it has already been implicitly proved that the summand 
satisfies the C-free condition, since this mean corresponds to a constant of motion (the 
energy conservation) in the Toda lattice irrespective of the commensurability. Then 
the integral of the second term 2 a ~ a J -  evidently vanishes (see equation (27)), and those 
of the other terms can be expressed by I ,  (use equation (28) for the third term 
The left-hand side is then equal to A'- A Wcd I - ,  +f  W 2 (  1 + c z +  d') ,  where use is made 
of the recurrence relation (A2.2) (let n = -1). The right-hand side of equation (6b )  
is, on the other hand, easily evaluated by equations (4b ) ,  (A2.1) and (A2.3), and we 
see that both the sides are equal to each other. 
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